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ABSTRACT

A method for determining adaptive observation locations is demonstrated. This method is based on optimal
estimation (Kalman filter) theory; it determines the observation location that will maximize the expected im-
provement, which can be measured in terms of the expected reduction in analysis or forecast variance. This
technique requires an accurate model for background error statistics that vary both in space and in time. Here,
these covariances are generated using an ensemble Kalman filter assimilation scheme. A variant is also developed
that can estimate the analysis improvement in data assimilation schemes where background error statistics are
less accurate.

This approach is demonstrated using a quasigeostrophic channel model under perfect-model assumptions. The
algorithm is applied here to find the supplemental rawinsonde location to add to a regular network of rawinsondes
that will reduce analysis errors the most. The observation network is configured in this experiment so there is
a data void in the western third of the domain. One-hundred-member ensembles from three data assimilation
schemes are tested as input to the target selection procedure, two variants of the standard ensemble Kalman
filter and a third perturbed observation (3DVAR) ensemble. The algorithm is shown to find large differences in
the expected variance reduction depending on the observation location, the flow of the day, and the ensemble
used in the adaptive observation algorithm. When using the two variants of the ensemble Kalman filter, the
algorithm defined consistently similar adaptive locations to each other, and assimilation of the adaptive obser-
vation typically reduced analysis errors significantly. When the 3DVAR ensemble was used, the algorithm picked
very different observation locations and the analyses were not improved as much.

The amount of improvement from assimilating a supplemental adaptive observation instead of a fixed ob-
servation in the middle of the void depended on whether the observation was assimilated sporadically or during
every analysis cycle. For sporadic assimilation, the adaptive observation provided a dramatic improvement
relative to the supplemental fixed observation. When an adaptive observation was regularly assimilated every
cycle, the improvement was smaller.

For the sporadic assimilation of an adaptive observation, targeting based simply on the maximum spread in
background forecasts provided similar target locations and similar analysis improvements to those generated
with the full algorithm. The improvement from the regular assimilation of an adaptive observation based on the
spread algorithm was no larger than when observations from a fixed target in the middle of the void were
regularly assimilated.

1. Introduction

It has long been recognized that the quality of a nu-
merical weather forecast is related to the quality of its
initial condition, or ‘‘analysis.’’ If the analysis has large
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errors, or if it has moderate errors in regions where
forecast errors grow quickly, then the resulting numer-
ical forecast may be poor.

Let us assume that in addition to a routine network
of observations, additional observations could be col-
lected sporadically for a moderate cost. These obser-
vations, which might come from dropsondes, pilotless
drones, driftsondes, or satellites, would be taken at a
location(s) chosen to maximize the expected improve-
ment in some aspect of the ensuing analysis or the sub-
sequent forecasts. This general problem is known as
targeting, or adaptive observations (Emanuel et al.
1995; Snyder 1996; Lorenz and Emanuel 1998).
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The development of existing methods for adaptive
observations have been driven by practical opportunities
in field experiments such as FASTEX (Snyder 1996;
Joly et al. 1997; Emanuel and Langland 1998), NOR-
PEX (Langland et al. 1999a), and the Winter Storms
Reconaissance Program (Szunyogh et al. 2000). These
methods include the singular vector technique (Palmer
et al. 1998; Buizza and Montani 1999; Bergot et al.
1999; Gelaro et al. 1999, 2000; Bergot 2001), a quasi-
linear inverse approach (Pu et al. 1997, 1998; Pu and
Kalnay 1999), gradient and sensitivity approaches (Ber-
got et al. 1999; Langland et al. 1999b; Baker and Daley
2000), ensemble spread techniques (Lorenz and Eman-
uel 1998; Hansen and Smith 2000; Morss 1998; Morss
et al. 2001); the ensemble transform technique (Bishop
and Toth 1999; Szunyogh et al. 1999), and the ensemble
transform Kalman filter (Bishop et al. 2001; Majumdar
et al. 2001).

Considering the adaptive observation problem on a
somewhat more theoretical level, determining the op-
timal observation location requires that we predict the
influence of a given observation on the uncertainty of
the analysis or the subsequent forecast. That influence
is determined partly by the type and accuracy of the
observation and partly by how errors will grow during
the subsequent forecast (if we are interested in fore-
casts). It is also strongly affected by the uncertainty in
the prior, or ‘‘background’’ forecast. Berliner et al.
(1999) provide the analytical tools for understanding
how analysis and forecast error characteristics are re-
lated to observation and background uncertainty. Their
framework, which is reviewed in section 2, is an ap-
plication of ideas of statistical design and estimation
theory to adaptive observations (see their section 2, ap-
pendix A; and Cohn 1997). The choices of observation
locations derived through this framework are optimal
in the case that the required probability distributions are
normal and forecast-error evolution is linear. This
framework differs from many of the existing approaches
that do not incorporate the effects of background un-
certainty, such as the singular vector technique or sen-
sitivity techniques (as implemented in practice, though
not in principle; see Ehrendorfer and Tribbia 1997;
Barkmeijer et al. 1998; Palmer et al. 1998; Hansen and
Smith 2000 for discussions of issues related to the
choice of initial norm). As a consequence, when using
these methods, the same observation location is defined
regardless of how large or small the background error
is in a given location, and regardless of how accurate
or inaccurate the observation (Baker and Daley 2000).

The data assimilation scheme is an additional factor
that determines the influence of an observation on the
background uncertainty. Results from field experiments
show that adding observations to operational analysis–
forecast systems can sometimes degrade the subseqent
forecasts, and this has often been blamed on inadequa-
cies of the operational assimilation schemes. Bergot
(2001) found that supplemental observations provided

a more consistently positive impact when they were
assimilated with a four-dimensional variational analysis
(4DVAR; Le Dimet and Talagrand 1986; Rabier et al.
1998) rather than a three-dimensional variational anal-
ysis (3DVAR; Lorenc 1986; Parrish and Derber 1992).
Note, however, that occasional degradations are inherent
in statistical assimilation schemes; see Morss and Eman-
uel (2002).

Very little work has been done showing how to use
the new and potentially very accurate ensemble-based
data assimilation methods for adaptive observations.
Our primary intent in this paper is to demonstrate that
covariances provided by the ensemble Kalman filter
(EnKF) are of sufficient quality to use in designing ob-
serving networks. Under the assumptions of a perfect
model, an infinite ensemble, normality of observation
and background errors, and linearity of error growth,
the EnKF (Evensen 1994; Evensen and van Leeuwen
1996; Houtekamer and Mitchell 1998, 2001; van Leeu-
wen 1999; Keppenne 2000; Mitchell and Houtekamer
2000; Hamill and Snyder 2000; Hamill et al. 2001; An-
derson 2001; Whitaker and Hamill 2002) provides the
minimum-variance estimate of an updated analysis state
and a correct model of the background- and analysis-
error covariances (Burgers et al. 1998). If high-quality
background-error covariances are available, this in turn
permits the adaptive observation problem to be tackled
rigorously and with only minor approximations. We will
also show that the lessened improvement from assimi-
lating an adaptive observation using suboptimal assim-
ilation schemes can be predicted as well, provided an
accurate estimate of background uncertainty is also
available.

To explore the consequences of using different as-
similation schemes for adaptive observations, we will
use ensembles of forecasts produced by two variants of
the EnKF. We will also test an ensemble produced by
a perturbed observation 3DVAR scheme. Using these
ensembles, one can predict the reduction in error vari-
ance from the assimilation of the regular network of
observations. Subsequently, it is possible to apply a con-
ceptually simple algorithm to estimate the magnitude of
the subsequent variance reduction across the domain
from an adaptive observation. A large number of po-
tential observation locations can be evaluated very
quickly. The adaptive observation algorithm then de-
termines the location where this variance is reduced by
a maximum expected amount. We will also describe but
not test an adaptive observation algorithm, which can
find the observation locations that maximize the ex-
pected reduction in forecast error.

Others investigations of adaptive observations have
used ensemble techniques to estimate background un-
certainty (e.g., Lorenz and Emanuel 1998; Bishop and
Toth 1999; Morss et al. 2001; Hansen and Smith 2000).
Only the ensemble transform Kalman filter (ETKF) of
Bishop et al. (2001), however, has used that estimate to
calculate explicity the influence of a given observation.
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FIG. 1. Location of fixed rawinsondes for network with data void.

TABLE 1. Observation error variances for temperature (K2), and u
and v wind components (m2 s22).

Level
Pressure

(hPa) T u v

1
2
3
4
5
6
7
8

917
771
648
545
458
385
324
272

2.82
2.06
1.69
1.69
2.01
2.74
3.59
4.39

2.16
3.62
4.96
5.81
6.73
7.71
8.76
8.82

1.62
2.71
3.73
4.36
5.05
5.78
6.57
6.61

Were both our proposed algorithm and the ETKF given
the same set of ensemble members after the assimilation
of the regular network of observations, the two tech-
niques would produce equivalent results (and both are
approximations to the results of Berliner et al. 1999).
However, we aim for a slightly different goal than in
Bishop et al. (2001) and their subsequent work (e.g.,
Majumdar et al. 2001). Their research has focused on
what can be done with operational ensemble forecast
data, and they make some algorithmic simplifications
that permit greater computational efficiency but reduced
accuracy. Our purpose is to demonstrate that this rig-
orous approach to adaptive observations is feasible and
effective using an EnKF, in that it can accurately predict
the effect of observations on analysis uncertainty.

In part to limit the scope of this paper, we focus on
choosing additional observations to minimize expected
analysis errors. The algorithm we develop, however, has
a straightforward extension to the case of minimizing
expected forecast errors, as described in section 3d.
Minimizing expected analysis errors is also of interest
in its own right, as it is the natural approach if one
desires to optimize forecast quality simultaneously at
multiple lead times or from multiple initialization times
(Berliner et al. 1999). Minimizing expected analysis er-
rors also avoids potential complications arising from the
nonlinearity of forecast dynamics, and the associated
non-Gaussianity of forecast errors (Hansen and Smith
2000).

2. Design of the experiment

The rest of the paper will use a quasigeostrophic (QG)
channel model as a vehicle for testing algorithms for
adaptive observations. For these experiments, we as-
sume the forecast model is perfect. A long reference
integration of the QG model provides the true state; the
assimilation and forecast experiments then use that same
model together with imperfect observations of the true
state.

Errors will be measured in a total energy norm. Let
f denote the Coriolis parameter (here, 1024 s21); m is
the dimension of the model state vector; N is the Brunt–

Väisälä frequency (here, 1.13 3 1022 s21), and F9 is a
geopotential perturbation. Then the energy norm is de-
noted as

21 21/2\ ·\ 5 f menergy

1/22 2 2m 2]F9 ]F9 f ]F9
3 1 1 .O 25 1 2 1 2 1 2 6[ ]]x ]y N ]zj51 j j j

(1)

a. Model and observations

The QG model is documented in Snyder et al. (2001,
manuscript submitted to Mon. Wea. Rev.) and was used
in Hamill and Snyder (2000) and Hamill et al. (2000).
It is a midlatitude, beta-plane, gridpoint channel model
that is periodic in x (east–west), has impermeable walls
on the north–south boundaries, and rigid lids at the top
and bottom. There is no terrain, nor are there surface
variations such as land and water. Pseudopotential vor-
ticity (PV) is conserved except for Ekman pumping at
the surface, ¹4 horizontal diffusion, and forcing by re-
laxation to a zonal mean state. The domain is 16 000
3 8000 3 9 km; there are 129 grid points east–west,
65 north–south, and 8 model forecast levels, with ad-
ditional staggered top and bottom levels at which po-
tential temperature u is specified. Forecast model pa-
rameters are set as in Hamill et al. (2000).

A single fixed observational network is tested here
(Fig. 1), with a data void in the western third of the
domain. All ‘‘control’’ observations are presumed to be
rawinsonde soundings, with u- and y-wind components
and u observed at each of the eight model levels. Ob-
servation errors (Table 1) are assumed to be normal and
uncorrelated between vertical levels and uncorrelated in
time. The same observation error variances are used in
the data assimilation and in the generation of synthetic
control observations. These control observations and
new analyses are generated every 12 h, followed by a
12-h forecast with the QG model that produces the back-
ground state at the next analysis time.

b. Data assimilation schemes

The adaptive observation algorithm to be described
in section 3 requires an ensemble whose sample co-
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TABLE 2. Parameters used for the three data assimilation approaches
tested here. Here, a is the percentage weight applied to stationary
covariances; c is an inflation factor for the time mean covariances
derived from an EnKF; r is the amount that background forecast
deviations about the mean are inflated before the data assimilation
proceeds, and lc is the correlation length scale (in grid points) for the
covariance localization.

Experi-
ment Name a c r lc

1
2
3

Inflated
Hybrid
Perturbed Obs

0.0
0.075
1.0

n/a
16.0
16.0

1.015
1.00
1.00

28.0
25.0
n/a

variance matrix approximates that of the background
errors (prior to the assimilation of the additional ob-
servations). That ensemble will depend on the specific
data assimilation scheme used to assimilate previous
observations.

We will use three assimilation schemes, a ‘‘perturbed
observation’’ 3DVAR algorithm (Houtekamer and De-
rome 1995; Hamill et al. 2000) and two variants of the
EnKF. All are described in detail in the appendix, and
parameter settings are listed in Table 2. The two versions
of the EnKF differ in the way that background-error
covariances are approximated given an ensemble of
background states. In the first, the deviation of each
member from the ensemble mean is ‘‘inflated’’ (i.e.,
multiplied by a scalar constant greater than 1) before
their use in the EnKF. In the second, the assimilation is
based on a ‘‘hybrid’’ covariance model in which the
background-error covariance matrix is approximated as
a weighted sum of the sample covariance from the en-
semble and a stationary covariance matrix (specifically,
that used in the 3DVAR scheme). Both versions of the
EnKF use covariance localization, as discussed in the
appendix.

The required ensemble is generated in the same man-
ner for each of these assimilation schemes. Suppose that
we have an ensemble of prior forecasts. Then, given
new control observations, each member of this ensemble
is updated separately with those observations perturbed
by an independent realization from the observation-error
distribution; this we term a perturbed observation
scheme. The resulting ensemble of analyses can then be
used to produce an ensemble of short-range forecasts
valid at the next observation time. Previous work has
shown that in a perfect-model context, such ensembles
have desirable sampling characteristics when used either
with a 3DVAR assimilation (Hamill et al. 2000) or in
the context of the EnKF (Houtekamer and Mitchell
1998, 2001; Hamill and Snyder 2000; Hamill et al.
2001). Again, further details of the implementation ap-
pear in the appendix. For ensemble data assimilation
schemes that do not involve perturbing the observations,
see Lermusiaux and Robinson (1999), Anderson (2001),
and Whitaker and Hamill (2002).

3. Methodology for choosing adaptive observation
locations

The methodology we implement for the selection of
an adaptive observation location follows closely from
the theory of Berliner et al. (1999). Our emphasis here
is to demonstrate that this rigorous approach to adaptive
observations is feasible and effective, in that it can ac-
curately predict the effect of observations on analysis
uncertainty using an appropriately constructed ensem-
ble. In addition, this methodology is able to predict the
impact of additional observations even when those ob-
servations are assimilated with a suboptimal assimila-
tion scheme. Notation generally follows the conventions
suggested in Ide et al. (1997).

Though our algorithm is conceptually simpler, this
methodology is mathematically identical to the ETKF
of Bishop et al. (2001) assuming both algorithms input
the same ensemble after the assimilation of the regular
network of observations. The major difference is de-
termination of how the regular network of observations
will reduce the variance in the ensemble between the
background and the analysis. The ETKF estimates the
reduction in the subspace of the ensemble in a complex
but computationally efficient manner. We assume the
ensemble of background states will be changed by the
assimilation of real or synthetic observations using the
actual analysis scheme. This is significantly more ex-
pensive but also is conceptually simpler and more ac-
curate, since aspects like ‘‘covariance localization’’
(Houtekamer and Mitchell 2001; Hamill et al. 2001) can
be included when processing the regular network of
observations.

a. Equations to predict analysis-error variance

First, consider the analysis calculation, written in the
general form

a b o b b oˆ ˆ ˆx 5 x 1 K(y 2 Hx ) 5 (I 2 KH)x 1 Ky (2)

where xa is the m-dimensional analyzed state vector, yo

is a p-dimensional vector of observations, K̂ is an ap-
proximate gain matrix defined below, and xb is the back-
ground state, which is typically a forecast from the pre-
vious analysis but more generally is our best estimate
of the state prior to assimilating the observations. The
linear operator H relates the true state xt to the obser-
vations through

o ty 5 Hx 1 e, e ; N(0, R). (3)

In reality, the relation between the model state and the
observations is often nonlinear, and most existing as-
similation schemes satisfy (2) and (3) only approxi-
mately.

The gain matrix K̂ is specific to the assimilation
scheme. In all the schemes considered here, K̂ has the
form

21b T b Tˆ ˆ ˆK 5 P H (HP H 1 R) , (4)
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where P̂b is a model or approximation of the actual
backround error covariance matrix,

t b t b TbP 5 ^(x 2 x )(x 2 x ) &, (5)

where ^ ·& denotes the expected value. For example,
many 3DVAR systems use P̂b 5 B, where B is a sta-
tionary, isotropic covariance matrix (e.g., Parrish and
Derber 1992), while the EnKF bases P̂b on the sample
covariance of an ensemble of background states.

Next, we derive a general expression for the analysis-
error covariance,

t a t a TaP 5 ^(x 2 x )(x 2 x ) &. (6)

Subtracting both sides of (2) from xt gives

t a t bˆ ˆx 2 x 5 (I 2 KH)(x 2 x ) 1 Ke. (7)

Substituting this result into (6) and assuming that the
observation and background errors are uncorrelated, that
is, ^e(xt 2 xb)T& 5 0, we obtain the imperfect covari-
ances

Ta b Tˆ ˆ ˆ ˆP 5 (I 2 KH)P (I 2 KH) 1 KRK
Tb b bˆ ˆ5 P 2 KHP 2 (KHP )

b T Tˆ ˆ1 K(HP H 1 R)K . (8)

If the assimilation scheme uses the correct background-
error covariance matrix (P̂b 5 Pb), then K̂ becomes the
Kalman gain matrix, K 5 PbHT(HPbHT 1 R)21, and

a bP 5 (I 2 KH)P
21b b T b T b5 P 2 P H (HP H 1 R) HP , (9)

which is the familiar updating of covariances in the
Kalman filter.

Equations (8) and (9) thus provide us with a frame-
work for estimating analysis-error covariances for a giv-
en H in the case of imperfect and perfect background-
error statistics, respectively. These equations express
how assimilation of new observations changes the un-
certainty of the analysis relative to that of the back-
ground. This change depends on the form and location
of the observations through H, the data assimilation
scheme through K̂, and the background uncertainty
through Pb. In particular, that change does not depend
on the actual observations yo, and one can predict the
effects of additional observations prior to the measure-
ments themselves (Berliner et al. 1999).

We emphasize that (8) accounts naturally for the as-
similation scheme and, moreover, that the influence of
the assimilation scheme on the analysis uncertainty can-
not be fully quantified without knowledge of the true
Pb. In addition, note that while the derivations of (8)
and (9) do not make assumptions about the form of the
underlying probability distributions for the forecast and
analysis, those equations will be useful only when the
covariance matrices Pa and Pb are useful summaries of
uncertainty, that is, when those distributions are not too
far from Gaussian. The usefulness of (8) is also limited

to those assimilation schemes in which the update is
approximately linear as assumed in (2).

b. Adaptively observing to reduce analysis-error
variance

Now suppose we want to choose the location of a
single observation to minimize the expected analysis-
error variance.1 Formally, this amounts to maximizing
the trace tr(Pb 2 Pa) over a set of observation operators
H consisting of all possible locations for the observation.
Assuming hereafter that an ensemble is available that
provides a reasonable and computationally tractable es-
timate of Pb, then (8) or (9) allow us to determine the
best H by evaluating tr(Pb 2 Pa) for each H. Typically,
this additional observation will supplement an existing
network of routine observations. The background or pri-
or estimate to which Pb pertains is then the analysis with
all routine observations.

For each potential observation location, there is an
associated H; however, it may be economically feasible
to observe more than one location at a time. With two
locations, one would potentially have to evaluate all the
combinations of locations to find the two that would
reduce variance the most. Instead, we will make the
simplifying assumption that the correct combination of
locations can be determined with a serial, or ‘‘greedy’’
algorithm (Lu et al. 2000; Bishop et al. 2001). This serial
approach is applicable when successive observations
have independent errors.

Specifically, to determine a sequence of multiple lo-
cations, the following steps are repeated: first, tr(Pb 2
Pa) is computed for each candidate observation location
(each H). The location with the maximum trace is then
selected, and an updated ensemble is generated whose
sample covariance approximates Pa implied by assim-
ilating an observation at that location. [Note that real
observations need not be assimilated at this point; the
important detail is that the ensemble can be updated
with some synthetic set of observations, since (8) and
(9) depend only on the observation error covariance R
and not on the actual observations.] The adaptive ob-
servation algorithm is then applied again using the up-
dated ensemble of analyses as background forecasts to
select the next location.

If the observations will be assimilated using a less
accurate model of background-error covariances, per-
haps as are used in 3DVAR, then (8) should be used
instead of (9) and prediction of the variance reduction
in (8) requires an ensemble (such as the perturbed-ob-
servation ensemble discussed in the appendix) that re-
flects uncertainty in the background using a given as-
similation scheme. Of course, if the ensemble estimate
of Pb is good enough for this purpose, it would also be

1 This minimization can be carried out for measures of uncertainty
other than total variance. A variety of choices are discussed in Ber-
liner et al. (1999).
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natural to include it in the assimilation scheme and (8)
would not be required.

c. Making the adaptive observation algorithm
computationally efficient

The algorithm just outlined involves evaluating the
influence of an observation on the analysis error over
many different observation locations. In this section, we
outline a relatively inexpensive technique for computing
the expected reduction in analysis variance for a given
observation.

The technique begins from an ensemble of back-
ground states, written as { , i 5 1, . . . , n}, wherebxi

subscripts denote ensemble members. The ensembles
considered here all approximate random samples from
the conditional distribution of xt given other informa-
tion. The background state xb is thus replaced by the
ensemble mean, b 5 (1/n) , and Pb is estimatedn bx S xi51 i

in (8) by
n1

Tb bb b Tb b bP̂ 5 (x 2 x )(x 2 x ) 5 X X , (10)O i in 2 1 i51

where Xb is the matrix whose ith column is (n 2 1)21/2

( 2 b). For the remainder of this section, we willbx xi

simply replace Pb by P̂b in (9), with the assumption that
P̂b approximates Pb with sufficient accuracy. Our sub-
sequent results will demonstrate that this is so in a mod-
erately complex, quasigeostrophic model.

If we are evaluating the reduction from assimilating
a single radiosonde, the matrix (HPbHT 1 R) in (9) is
of full rank, relatively low order, symmetric, and pos-
itive definite. Hence it can be decomposed as QLoQT,
where Q is an orthogonal matrix whose columns are the
normalized eigenvectors and Lo a diagonal matrix of
associated eigenvalues. Since Q21 5 QT,

21 21 21/2 Tb T T(HP H 1 R) 5 QL Q 5 (QL ) . (11)o o

This square root formulation in (11) is attractive since
we can now write Pb 2 Pa as a matrix square root:

21b a b b T b T bP 2 P 5 KHP 5 P H (HP H 1 R) HP
21/2 21/2 Tb T b T5 (P H QL )(P H QL ) . (12)o o

However, in computing the term in parentheses on the
right-hand side of (12), a matrix multiplication by Pb is
still necessary, and if H is sparse, this typically will be
the most computationally intensive step.

In calculating the trace of (12), the product PbHT is
evaluated as Xb(HXb)T, as in (A2) from the appendix.
To render this more computationally efficient, we per-
form a singular value decomposition (SVD) on Xb, so
that

b TX 5 USV , (13)

where U is an m 3 (n 2 1) matrix with orthonormal
columns, S is an (n 2 1) 3 (n 2 1) diagonal matrix
of nonzero singular values, and V is an (n 2 1) 3 (n

2 1) orthogonal matrix. Similarly, HXb 5 HUSVT so
(HXb)T 5 VST(HU)T 5 VS(HU)T since ST 5 S. Using
this and VTV 5 I, (12) can be rewritten as

b aP 2 P
T 21/2 T 21/2 TT b T b5 (USV (HX ) QL )(USV (HX ) QL )o o

2 T 21/2 2 T 21/2 T5 (US (HU) QL )(US (HU) QL ) . (14)o o

Computing the trace of (14) can be further simplified.
Since the columns of U are orthonormal, the leading
multiplication by U in each of the factors on the right-
hand side can be omitted without changing the trace of
the product, and

b atr(P 2 P )
2 T 21/2 2 T 21/2 T5 tr{[S (HU) QL ][S (HU) QL ] }. (15)o o

This equation is relatively inexpensive to compute.
There is an up-front cost of performing a singular value
decomposition of Xb, but this need be done only once,
and after this decomposition is performed, then the eval-
uation of (15) at any particular observation location can
be performed quickly. The operation (HU)T is (for this
model) the matrix transpose of a simple interpolation
to the observation locations using the ensemble of ei-
genvectors instead of the raw ensemble data. Further,
the multiplication by S2 is inexpensive since S2 is di-
agonal. An eigenvalue decomposition of HPbHT must
be performed for each potential observation location,
but the rank of this matrix is relatively small, and so
its decomposition is inexpensive.

Note that for computational reasons, we have made
one simplification that may reduce the accuracy of this
adaptive observation scheme. Background-error co-
variances in the adaptive observation algorithm are as-
sumed to be a direct outer product of ensemble member
forecasts’s deviation from their mean, as in (10); that
is, Pb is modeled strictly in a reduced, n-dimensional
subspace to make the computations tractable. The model
of covariances used in this algorithm thus assumes no
localization, nor a hybridization of ensemble-based and
stationary covariances that have been found to improve
the EnKF performance. Even though these features may
be a part of the actual data assimilation, their inclusion
would make the computations here much more expen-
sive. This simplifying assumption may cause some mi-
nor misestimation of the actual benefits of assimilating
an observation. Results (not shown) indicated that the
discrepancies introduced by making these approxima-
tions resulted only in a very small misestimation of the
expected reduction in analysis variance.

d. Adaptive observations to reduce forecast-error
variance

Next, consider choosing locations for additional ob-
servations with the goal of minimizing the forecast-error
variance. This requires comparing the forecast from a,x
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the analysis including both routine and additional ob-
servations, with that from b, the analysis based usingx
only routine observations). Denoting quantities pertain-
ing to these two forecasts by superscripts f | a and f | b,
respectively, the change in forecast-error variance pro-
duced by the additional observations is tr(P f | b 2 P f | a).
Our methodology is again similar to that proposed in
Bishop et al. (2001) and used in Majumdar et al. (2001).

If the analysis errors are not too large, then P f | b 2
P f | a ø M(Pb 2 Pa)MT, where M is the linearization of
the nonlinear forecast operator M. Using (9) and writing
Pb 5 Xb ,TbX

f |b f |aP 2 P
T 21 Tb b b T b bø MX (HX ) (HP H 1 R) HX (MX ) . (16)

Now consider the ensemble of forecasts from the back-
ground ensemble, 5 M( ) for i 5 1, . . . , n. Withbf | bx xi i

the same accuracy, MXb in (16) can be replaced by X f | b,
the matrix whose ith column is (n 2 1)21/2( 2 f | b),f | bx xi

and (16) becomes
f |b f |aP 2 P

TT 21f |b b b T b f |bø X (HX ) (HP H 1 R) (HX )X . (17)

An efficient calculation of tr(P f | b 2 P f | a) now proceeds
as in (14) with the eigendecomposition of (HPbHT 1 R)
and singular-value decomposition (SVD) of X f | b as in
(13) as

Tf | bf | b f | b f | bX 5 U S V . (18)

Thus,
f |b f |atr(P 2 P )

Tf |b T 21/2f |b bø tr{[S V (HX ) QL ]o

Tf |b T 21/2 Tf |b b3 [S V (HX ) QL ] }, (19)o

again omitting a factor of U f | b that does not change the
trace, as in (15).

Assuming an ensemble of forecasts have been gen-
erated from the analyses without adaptive observations,
algorithmically, then, the first step is to perform SVDs
of the forecasts as in (18). Then for each observation
location (each H), compute the expected reduction in
forecast error variance using (19). After each H has been
tested, the adaptive observation location is determined
from the H where the trace was largest.

4. Performance of the ensemble data assimilation
methods

Before demonstrating the adaptive observation lo-
cation method, we document the general performance
of the three data assimilation methods using the regu-
larly available observations at the fixed network of ra-
winsondes in Fig. 1. We describe the general error char-
acteristics of each ensemble, as the error characteristics
will affect the amount of improvement that can be ex-
pected from a new observation. As well, the sampling

characteristics of the ensembles are briefly documented
to justify using each ensemble to estimate background
error covariances. In the subsequent section, the ensem-
ble from each of three data assimilation methods will
be tested for their efficacy in defining adaptive obser-
vation locations using (15).

For each of the three assimilation methods, a 90-day
cycle of short-range forecasts and analyses were gen-
erated, with an updated analysis generated every 12 h.
We document the performance of three data assimilation
schemes as described in Section 2b, the appendix, and
Table 2: an inflated ensemble Kalman filter, a hybrid
EnKF–3DVAR scheme, and a perturbed observation
3DVAR (PO–3DVAR) ensemble where the covariances
are stationary, as in 3DVAR. For each experiment, a
100-member ensemble was used.

Figures 2a–c show a time series of analysis errors in
the total energy norm [Eq. (1)] for each member and
for the ensemble mean. As expected, for each of the
three ensembles, the mean analysis is substantially lower
in error than the large majority of individual ensemble
member analyses. Errors for the inflated ensemble are
slightly lower than for the hybrid, and both of these are
dramatically lower in error than for the PO–3DVAR
ensemble, indicating the dramatic benefits that may be
achievable with accurate, flow-dependent background-
error covariances (though the relative improvement may
be unrepresentative of the results in real world weather
prediction, since these experiments are conducted with
a relatively simple model in a perfect-model frame-
work).

We also provide a second metric of forecast quality,
measuring the ability of the ensemble to sample properly
from the distribution of plausible forecast states. For a
properly constructed ensemble, low analysis error
should be accompanied by uniformly distributed rank
histograms (Hamill 2001 and references therein). The
rank of the truth relative to a sorted n-member ensemble
of forecasts should be equally likely to occur in any of
the n 1 1 possible ranks if the truth and ensemble sam-
ple the same underlying probability distribution. Hence,
over many samples, a histogram of the ranks of truth
relative to the sorted ensemble should be approximately
uniform.

Figures 3a–c provides rank histograms for the model
level 4 potential temperature, generated using a subset
of 20 times from the time series, with the first sample
analysis taken 10 days after the start of the cycle and
with 4 days between each sample analysis. Samples are
taken every 250 km in the domain [as noted in Hamill
(2001), samples spaced this closely together may not
have independent ranks—the general shape of rank his-
tograms may be useful, but hypothesis tests for unifor-
mity using x2 tests are likely to be misleading]. In any
case, there is a slight excess of population at the highest
ranks, more notably for the two variants of the ensemble
Kalman filter. Interestingly, there appears to be more
nonuniformity for the inflated ensemble, where analysis



JUNE 2002 1559H A M I L L A N D S N Y D E R

FIG. 2. Time series of analysis errors for ensemble assimilating
rawinsonde data using the fixed network in Fig. 1. Dots indicate errors
of individual ensemble members, and the solid line the error of the
ensemble mean in the total-energy norm. Time average of errors for
individual members and for ensemble mean are denoted by the num-
bers on rhs of plot. (a) Inflated EnKF, (b) hybrid EnKF–3DVAR, and
(c) PO–3DVAR.

FIG. 3. Rank histograms for analyzed u at model level 4. (a)
Inflated ensemble, (b) hybrid, and (c) PO–3DVAR.

errors were lowest. This showed up in many other sim-
ulations as well; often lower analysis errors were ac-
companied by more nonuniform rank histograms, sug-
gesting that it is difficult to optimize the ensemble si-
multaneously for minimum error characteristics and op-
timum sampling characteristics. In any case, the
departures from nonuniformity are quite mild. Given
that 1) the ensemble-data assimilation schemes are gen-
erating analyses with greatly reduced errors relative to
3DVAR, and 2) the ensemble data appears relatively
reliable, we proceed under the assumption that back-
ground-error covariance estimates required by the adap-
tive observation algorithm should be reasonably esti-
mated by the sample covariance of the ensemble.

5. Adaptive observation results

a. Location selection with full algorithm

We now test the scheme that selects the adaptive ob-
servation location that will maximize the expected re-
duction in analysis error variance [Eq. (15), the ‘‘full’’
algorithm]. The adaptive observation results shown here
are primarily based on the same subset of 20 times in
this series, starting 10 days into the analysis cycle and
every 4 days thereafter. The analyses produced by the
assimilation of the fixed network of rawinsondes (raobs)
are used as the background states for the adaptive ob-
servation tests performed here. This is a generally jus-
tifiable assumption to make if the observations are as-
similated serially (Gelb 1974; Anderson and Moore
1979), though see Whitaker and Hamill (2002) for cir-
cumstances under which this approximation is not valid.

As a first check of our adaptive observation algo-
rithm, we assess whether the expected reduction of var-
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FIG. 4. Observation locations for testing of expected vs actual
analysis variance reduction.

iance computed via (15) is consistent with the actual
reduction in variance achieved during the data assimi-
lation. To determine this, it was assumed that a raob
profile of winds and temperatures with statistics from
Table 1 (adapted from operational statistics cited in Par-
rish and Derber 1992) would be available at each of the
fixed set of locations shown in Fig. 4 on each of the 20
case days. For each location and time, the appropriate
H operator was developed, which extracts a background
wind and temperature profile at the observation location.
The expected tr(Pb 2 Pa) was computed via (15) for
each sample. We normalized this by the number of grid
points according to

b atr(P 2 P )
b 5 , (20)

m

generating a vector of b’s.
We compare this against the reduction in variance

when an observation is actually assimilated. For each
location and time, a sample control observation was
generated, and then a set of perturbed observations. The
perturbed observations were assimilated using a stan-
dard ensemble Kalman filter algorithm, with no local-
ization of covariances, no inflation of member devia-
tions, nor hybridization. We then computed the actual
reduction in ensemble variance

n1 b bb b Ta 5 (x 2 x )(x 2 x )O i i[m 2 1 i51

n
a aa a T2 (x 2 x )(x 2 x ) (21)O i i ]i51

in the energy norm from the ensemble of analyzed states.
The expected reduction from (20) in the sample analysis
variance ought to closely match the actual reduction
from (21). Some minor variations can be expected as a
result of using the ensemble Kalman filter approach,
since it is possible that the use of perturbed observations
can generate spurious background-observation error
correlations (see Whitaker and Hamill 2002). In any
event, this effect should be small when the ensemble

size is large, and as shown in Fig. 5a, b is near perfectly
correlated with a. In other words, the reduction in the
ensemble sample variance from assimilating an obser-
vation can be predicted nearly perfectly without actually
assimilating that observation by using (15).

Since we have not compared the ensemble against the
true state, the calculation performed above tells us noth-
ing about whether the analysis was improved by the
assimilation of that observation, only the magnitude of
the expected error variance reduction. The more inter-
esting question is of course whether the assimilation of
observations actually reduces the ensemble error. Fore-
cast ensembles provide an estimate of the conditional
distribution of the true state xt (given all previously
available observations). The sample mean is an estimate
of xt. For each individual observation profile that was
assimilated, we calculate the actual reduction in mean
squared error according to

b at 2 t 2c 5 \x 2 x \ 2 \x 2 x \ . (22)

It can be shown that in an expected-value sense, c and
b ought to be of similar magnitudes. To assess whether
this relationship exists here, c is plotted against b in
Fig. 5b. There is much less of an obvious linear rela-
tionship, though in general large expected reductions in
variance are more typically associated with large re-
ductions in ensemble mean error. We suspect that the
lack of a clear relationship may be due to the small
sample size (also, sample points are not independent,
since error structures are correlated for sample points
on the same case day, and since there are only 20 case
days). Also, note that 28% of the assimilated obser-
vations actually increased the error.

Why do some of the assimilated observations increase
the ensemble mean analysis error? (see Morss and
Emanuel 2002 for an extended discussion of this topic.)
First, the EnKF provides a model of background-error
covariances, but there is no guarantee that these error
statistics are perfect. As well, the assimilated obser-
vations are imperfect, and sometimes the errors in the
observations may be large enough for the observation
to worsen the analysis (see Morss and Emanuel 2002,
Fig. 11 for a nice illustration of this). The nature of the
analysis process is statistical and of course subject to
random errors; on average, observations provide benefit
but they are not guaranteed to do so in every individual
instance. For this perfect-model simulation with a
known true state, we can assess the importance of ob-
servation errors by simply assimilating perfect obser-
vations. When they are assimilated, as shown in Fig.
6c, only 12% of the instances yields a mean square
analysis error increase, and the magnitude of the typical
degradation is significantly smaller. This suggests that
the majority of the degradations were associated with
errors in the observations.

Next, we demonstrate the operation of the adaptive
observation algorithm on several selected case days.
Ensemble data from each of the three data assimilation
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FIG. 5. Comparisons of variances when assimilating observations
at locations in Fig. 4 using inflated ensemble. (a) Actual reduction
in analysis variance a after assimilation of adaptive observation vs
predicted reduction in analysis variance b. (b) Fractional reduction
in ensemble mean squared error variance c vs b when using imperfect
observations, and (c) as in (b) but using perfect observations.

systems (inflated, hybrid, and PO–3DVAR) were used
for location selection under the assumption that the en-
semble could provide a perfect model of the covari-
ances, that is, ensembles from each were input to (9) to
assess the impact assuming that a Kalman filter approach
was used for the data assimilation. For each horizontal
grid point in the domain on each of the 20 case days,
we tested the assimilation of a hypothetical adaptive
observation profile at that location using (15). At each
location, we calculated tr(Pb 2 Pa)/tr(Pb), a measure of
the fractional reduction of expected analysis-error var-
iance over the entire domain. Figures 6–8 provide maps
of the patterns of expected fractional reduction on three
different case days using the inflated ensemble. The
three cases show days where assimilating a raob profile
could be expected to produce small, moderate, and large
improvements, respectively. Several interesting features
are shown here. First, the difference in the expected
improvement between Figs. 6b and 8b is quite dramatic;
less than a 10% fractional improvement from assimi-
lating a raob profile to approximately a 55% improve-
ment. This suggests that the algorithm may be able to
define days when supplemental observations will be par-
ticularly helpful, as well as where in the domain the
observation should be taken to provide the most benefit.
Also note that a synthetic observation was actually as-
similated in each case, with concomitant reductions in
analysis variance, as illustrated in panel c of Figs. 6–8.
These show maps of the expected improvement when
the adaptive observation algorithm was applied a second
time, after the first adaptive raob had been assimilated.

Figures 7b and 8b also suggest that an optimal adap-
tive location may differ from that which the casual user
might pick from inspection of the flow on that day. In
Fig. 7, the ensemble apparently indicated greater un-
certainty about the details of the cutoff low in the north-
ern part of the data void than the structure of the jet.
Similarly, in Fig. 8, the trough in the southwest part of
the domain was apparently poorly defined. Also note
that the errors between the regions of the primary and
secondary maxima in Fig. 7b were likely to be uncor-
related, given their distance from each other and that
the primary location was in a cutoff low detached from
the main jet. In Fig. 7c, after assimilation of the primary
adaptive observation, most of the error variance near
the primary location had been eliminated but not so near
the secondary location.

The adaptive observation examples shown so far were
generated with the inflated ensemble. Are the targets
and patterns of expected improvements similar when
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FIG. 6. Expected fractional reduction of analysis error variance
from application of adaptive observation algorithm on day 14 of the
90-day integration of the inflated ensemble assimilation scheme. (a)
True geopotential height (solid) at model level 8 and uT (potential
temperature on top lid; dashed). (b) Expected fractional reduction in
analysis error variance for each potential observation location in the
domain; the value at a given location thus denotes the fractional
reduction over the entire domain if an observation were to be assim-
ilated at that location (normalized by the sum of background-error
variances before the assimilation of an adaptive observation). Dots
indicate locations of fixed network of observations previously assim-
ilated. Star indicates location of maximum expected reduction (the
target location). Contours at 2% and every 4% thereafter. (c) As in
(b) but the improvement after the first adaptive observation has been
assimilated. Again, the fractional reduction is normalized by the back-
ground-error variance.

FIG. 7. As in Fig. 6 but for day 54.

generated from the hybrid and perturbed observation
3DVAR ensembles? Figures 9a–c presents the expected
improvement from the hybrid ensemble computed using
(15); these panels should be compared respectively to
Figs. 6b, 7b, and 8b. The patterns of expected improve-
ment were quite similar, and the observation locations
for the latter two cases were almost identical.

The PO–3DVAR ensemble was also examined. In this
test, the expected improvement was evaluated using

(15), so that P̂b was estimated from the PO–3DVAR
ensemble using (9). This, in essence, assumed that Pb

was correctly estimated from the PO–3DVAR ensemble,
and that the subsequent data assimilation was done with
the EnKF instead of 3DVAR (though, in actuality, the
data assimilation did use 3DVAR). Figures 10a–c pre-
sent the expected improvements for the three case days
discussed. The expected improvements that might be
obtained are much larger than for the inflated and hybrid
ensembles, concomitant with the variance in this en-
semble being larger. The regions of large improvement
are also more diffuse, indicating that the PO–3DVAR
ensemble is generally more uncertain about the state of
the atmosphere over large regions, whereas the inflated
and hybrid EnKFs were able to narrow down the regions
of uncertainty. Of course, one would not run a perturbed
observation, 3DVAR ensemble and then switch to as-
similating an adaptive observation via the EnKF; pre-
sumably, 3DVAR would be used for the assimilation of
the adaptive observation. We will revisit shortly the im-
pact of an adaptive observation when much less accurate
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FIG. 8. As in Fig. 6 but for day 70. FIG. 9. (a) As in Fig. 6b but for hybrid ensemble, (b) as in Fig.
7b but for hybrid ensemble, and (c) as in Fig. 8b, but for hybrid
ensemble.

3DVAR statistics are used for the data assimilation in-
stead of the ensemble-based statistics.

However, let us briefly return to assessing the impact
of these adaptive observations on improving analysis
errors. To assess the improvement, for each of the 20
case days, the one optimal observation location was
determined for the inflated, hybrid, and PO–3DVAR
ensemble using (15). Because the accuracy of the sub-
sequent analysis may depend upon the accuracy of the
observation, for each case day we generated five in-
dependent realizations of the control observations by
adding errors to the true state, with the errors consistent
with R. Each observation was then separately assimi-
lated using the same set of background forecasts. The
values of c and b were computed from (22) and (20),
respectively, and c versus b is plotted in Figs. 11a–c for
the inflated, hybrid, and PO–3DVAR ensembles, re-
spectively. The expected reduction in variance and the
actual reduction in ensemble mean squared error were
roughly consistent for the inflated and hybrid ensembles;
generally, larger expected reductions in the ensemble

mean error were associated with larger expected reduc-
tions in analysis variance. However, the actual reduction
for the PO–3DVAR ensemble was much less than pre-
dicted. This, as noted in the preceding paragraph, was
a consequence of the actual data assimilation being per-
formed with 3DVAR while the adaptive observation
algorithm assumes that the assimilation was performed
with an EnKF. Now, suppose that the ensemble really
does provide an accurate model of Pb, but the much
less accurate 3DVAR statistics are to be used for the
data assimilation. Then we can evaluate the improve-
ment from an adaptive observation based on (8) instead
of (9); here, we compute the trace of (8) assuming P̂b

is the stationary, 3DVAR covariance model and Pb is
the covariance estimate from the PO–3DVAR ensemble.
Fig. 11d shows c versus b under these assumptions.
Now, the expected improvement from assimilating via
3DVAR based on (8) was consistent with the ensemble
mean squared errors. We note that accurately evaluating
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FIG. 10. (a) As in Fig. 6b but for PO–3DVAR ensemble. However,
contour interval is changed to 4% and every 8% thereafter. (b) As
in Fig. 7b but for perturbed observation ensemble, and (c) as in Fig.
8b, but for perturbed observation ensemble.

the improvement from assimilating adaptive observa-
tions using (8) requires a near-perfect estimate of the
background-error covariances, such as may be supplied
from an EnKF; if one has such an estimate and could
perform the assimilation via an EnKF as readily as via
3DVAR, one might as well assimilate the data with the
EnKF. Note also that greater improvements from adap-
tive observations when using a more sophisticated data
assimilation system has previously been suggested by
Bergot (2001) and Bishop et al. (2001).

Consider now whether the algorithm picked similar
locations using each of the three ensembles. Figure 9
suggests that hybrid and inflated locations were often
quite similar, while Fig. 10 suggests that PO–3DVAR
locations were often different. Figures 12a–b show just
how similar the inflated and hybrid locations were. The
exact same observation location was picked on half the
case days, and only three days had substantially different

locations, one of which is illustrated in Figs. 6b and 9a.
However, when comparing the locations from the in-
flated ensemble against the PO–3DVAR ensemble (Fig.
12b), there were many cases when locations were quite
different. The differences in adaptive observation lo-
cations do not necessarily indicate a problem with the
PO–3DVAR ensemble; rather, they highlight that dif-
ferent data assimilation schemes will produce different
background-error statistics.

b. Improvement from adaptive versus supplemental
fixed observations

We now attempt to provide an estimate of the benefit
of assimilating a supplemental adaptive observation rel-
ative to assimilating a supplemental fixed observation
in the middle of the void. We test this in two manners;
first, we compare the analysis-error reduction when ei-
ther a fixed or adaptive observation is sporadically as-
similated. Next, we consider the case when an adaptive
or new fixed observation replaces one of the fixed ob-
servations in the data-rich region during every data as-
similation cycle.

Using the inflated ensemble and the set of 20 times
used previously in Figs. 5 and 11, we applied the adap-
tive observation algorithm (15). The fractional reduction
in the ensemble mean analysis error c from (22) was
computed and then compared to the fractional reduction
that would be achieved with a fixed supplemental raob
profile at the grid point (30, 33), in the middle of the
void. A scatterplot of the reduction is shown in Fig. 13.
There is a dramatic improvement from using the adap-
tive observation relative to the fixed observation. The
mean improvement is more than four times larger for
the adaptive relative to the fixed. The adaptive obser-
vation improved the analysis in 19 of 20 cases versus
only 15 of 20 for the fixed.

We also performed an experiment where one obser-
vation profile in the middle of the data-rich region was
removed (the observation at x 5 80, y 5 45 in Fig. 1,
chosen because of the abundance of other nearby obser-
vations), and either a new fixed observation at (30, 33)
or an adaptive observation was assimilated during every
cycle. The time-averaged relative improvement now is
not nearly as dramatic (Fig. 14). There were substantial
reductions in the ensemble mean analysis error from in-
serting a fixed observation in the middle of the void
(compare to ensemble mean error of 1.07 in Fig. 2a).
With an adaptive observation, there was further improve-
ment, but not to the extent suggested from the experi-
ments where an adaptive observation was introduced spo-
radically. There may be a number of factors that limit
the improvement with cycled adaptive observations.
First, relatively quickly, the adaptive observations reduce
error variance in the data void. The primary benefit of
adaptive observations occurs when the background errors
are quite large; then the observation has a great impact
(see Morss and Emanuel 2002 as well). When an adaptive
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FIG. 11. (a) Reduction in ensemble mean squared error c vs expected reduction in analysis error variance
b for optimal target locations from inflated ensemble. Vertical row of five dots indicate the range of error
reduction for 5 independent control observations tested for each of the 20 case days. (b) As in (a) but for
hybrid ensemble, and (c) as in (a), but for PO–3DVAR ensemble. (d) As in (c), but where Eq. (8) is used
instead of (9) to predict expected improvement. Note different scales for axes in each figure.

observation is continually assimilated, it reduces the max-
imum background errors substantially, and errors are not
likely to grow back to their original magnitude in the 12
h to the next assimilation cycle, similar to a result noted
in Gelaro et al. (2000). Thus, in some sense an adaptive
observation can make subsequent adaptive observations
less necessary. Another possibility is that features with
high errors eventually flow near enough by the fixed
observation to be effectively corrected using the EnKF
covariances.

c. Adaptive observations based on ensemble spread

The algorithm described in (15) still requires a non-
negligible amount of computing time and involves a
moderate amount of coding. Since it is theoretically
justifiable based on filtering theory and requires only
minor approximations, it does provide a nice baseline

for the evaluation of simpler methods. We examined
one such method, selecting a location where the ensem-
ble spread was largest. Such a technique has been sug-
gested in the past in Lorenz and Emanuel (1998), Morss
(1998), Hansen and Smith (2000), and Morss et al.
(2001). Here, we used the squared spread (the variance
about the ensemble mean) of column total energy gen-
erated from the inflated ensemble and compared it to
the observation locations selected using (15) with the
inflated ensemble. Figures 15a–c shows the squared
spread in the ensemble on the same three days as pic-
tured in Figs. 6–8; note the strong correlation in the
patterns of spread and the magnitudes of expected im-
provement in Figs. 6b, 7b, and 8b. Figure 16a shows
the strong correspondence of locations over the 20 cases
and Fig. 16b shows how the expected improvement us-
ing (15) was quite similar to the expected improvement
at the spread observation locations.
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FIG. 12. (a) Difference in selected optimal adaptive observation
locations when using inflated ensemble (darkened dots) and hybrid
ensemble (diamonds). Darkened diamonds indicate that adaptive ob-
servation locations were identical. Locations for the same case day
are connected by solid line. (b) As in (a) but for inflated ensemble
vs PO–3DVAR ensemble.

FIG. 13. Improvement in ensemble mean analysis error when as-
similating adaptive vs fixed observations on each of 20 case days
using inflated ensemble.

FIG. 14. Time series of ensemble mean analysis errors when re-
placing observation profile at grid location (80, 45) during every data
assimilation cycle with either a fixed profile at (30, 33) or an adaptive
observation. Compare against time series of ensemble mean error
from Fig. 2(a).

The strong correspondence was somewhat to be ex-
pected. The Kalman gain K 5 PbHT(HPbHT 1 R)21 is
the product of two factors. The first, PbHT, is the co-
variance between the observation location and other grid
points. The second, (HPbHT 1 R)21, factors in the rel-
ative accuracy of the observation and the background
at the observation location. If many grid points have
background errors that strongly co-vary with back-
ground errors at the observation site, then the obser-
vation will make large corrections to the analysis over
those co-varying grid points. Conversely, if background
errors at other grid points near the observation are rel-
atively uncorrelated with errors at the observation lo-
cation, the corrective influence of that observation will
be small (Berliner et al. 1999). If the extent of back-
ground-error covariance is rather similar from grid point
to grid point, then the spread in the ensemble is the
primary factor in determining location; however, if the
spread is similar everywhere, variations in the back-
ground-error covariance will play a bigger role in de-
termining the location. For the intermittent assimilation
of observations, the location apparently was determined
largely by the geographical variations of spread more
than by the covariance structure in the background.

To demonstrate what improvement may be realized
from assimilating an adaptive observation based on
spread during every analysis cycle, we performed an
experiment similar to the one used to generate Fig. 14.
We conducted a 90-day assimilation cycle, assimilating
all of the fixed observations shown in Fig. 1 except the
observation at x 5 80, y 5 45. We then assimilated a
replacement adaptive observation at the location with
maximum spread. This resulted in a reduction of en-
semble mean error in the energy norm of about 18%
(Fig. 17). However, perhaps introducing an observation
somewhere out in the middle of the void is what was
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FIG. 15. Squared spread in column total energy from the inflated
ensemble (shaded) and model level 8 geopotential (dark solid lines).
Target locations are marked with a star. Contours for spread at 1, 2,
3, 5, 10, 15, 20, 30, 40, 50, and 60 m2 s22. (a) Case day 14 [compare
with Fig. 6(b)]. (b) Case day 54 [compare with Fig. 7(b)]. (c) Case
day 70 [compare with Fig. 8(b)].

FIG. 16. (a) Difference in selected adaptive observation locations
when using full algorithm with inflated ensemble (darkened dots) and
locations based on maximum column total energy spread in inflated
ensemble (diamonds). (b) Expected reduction in analysis error var-
iance as evaluated from ensemble when locations are defined by full
algorithm (abscissa) vs at locations with maximum spread (ordinate).

of importance more than the specific location of the
observation. To test this, we performed the same ex-
periment of removing the observation at x 5 80, y 5
45 and inserting a new, fixed observation at x 5 30, y
5 33, near the middle of the void. The improvement
for this network was about the same as with the adaptive
observation based on spread.

Collectively, these results suggest that sporadic use
of adaptive observations based on spread generated
from an appropriate ensemble should be both useful
and simple to implement. However, when cycled, the
variance in the ensemble is quickly reduced and ho-
mogenized, and the spread algorithm is not very effec-
tive. Further improvements mostly depend upon the us-
ing of information on the covariance structure of back-
ground errors, as evidenced by the improvement noted
in Fig. 14 but not in Fig. 17.

6. Discussion and conclusions

The underlying theory of data assimilation provides
a rational basis for the selection of an adaptive obser-
vation location. Under the theory, if the background-
error covariance is accurately modeled and depends
upon the dynamics of the flow, then the effect of an
adaptive observation upon analysis-error variance can
be estimated. At first glance, the equation for estimating
the reduction in analysis- or forecast-error variance ap-
pears to be too computationally demanding to be useful,
owing to the high dimensionality of the background-
error covariance matrix. However, if background-error
covariances can be modeled using ensemble-based data
assimilation methods such as the EnKF, these covari-
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FIG. 17. Ensemble mean errors in the energy norm using the inflated
ensemble. Dashed line indicates errors for where a single sounding
from the fixed network at the location x 5 80, y 5 45 has been
replaced by a sounding at x 5 30, y 5 33. Solid line indicates errors
where sounding at x 5 80, y 5 45 is replaced by an adaptive ob-
servation with the location determined by the maximum spread.

ances can be estimated in a reduced-dimension subspace
and the computations made more efficient.

In this paper, we demonstrated the application of an
algorithm to select the optimal adaptive observation lo-
cation using the background-error statistics from an en-
semble Kalman filter coupled to a quasigeostrophic
model. A perfect-forecast model was assumed, and an
experiment was conducted with an observation network
with a dramatic data void covering the western third of
the domain. The algorithm was able to determine lo-
cations on each day where a supplementary observation
was expected to reduce analysis error the most. The
algorithm was also able to quantify how the expected
benefit changed from day to day. When tested in a sim-
ple quasigeostrophic channel model under perfect-mod-
el assumptions, the algorithm predicted large day-to-
day variations in the expected improvement to be re-
alized from an adaptive observation. This suggests that
it may be possible to define a small subset of days when
such supplemental observations will be especially help-
ful in reducing analysis errors. For brevity, we did not
consider the problem of adaptive observations to reduce
forecast errors, though in principle the problem is no
more complex; the specific technique that would be em-
ployed for reducing forecast error was described in sec-
tion 3c.

As well as developing a model for predicting the
influence of observations when background-error sta-
tistics are estimated correctly, we also developed and
demonstrated a technique to estimate observation influ-
ence when background-error statistics are imperfect, as
they clearly are in the time-averaged covariances in
3DVAR. As expected, the improvement from supple-
mental observations is significantly lessened when the
adaptive observation is assimilated with a scheme using
less accurate background-error covariances. These re-
sults underscore the importance of accurate estimates of

the background-error covariance matrix when locating
or assimilating adaptive observations.

We also compared the amount of improvement when
adaptive observations were either assimilated sporadi-
cally or during every analysis cycle. When an adaptive
observation was assimilated sporadically using the
EnKF, that observation increased the percentage of anal-
ysis-error variance reduction fourfold compared to the
assimilation of an observation at a fixed location in the
middle of the data void. However, if either a fixed or
an adaptive observation was assimilated during every
data assimilation cycle, the reduction in error compared
to assimilating the fixed observation was substantial but
less dramatic. Adaptive observations are most helpful
in situations when the background errors are large. Thus,
if previous adaptive observations have already dramat-
ically reduced analysis errors, subsequent adaptive ob-
servations will be less useful.

As a proxy for the full adaptive observation algorithm
developed here, we examined the efficacy of assimilat-
ing an adaptive observation based on the spread in the
ensemble. If such an observation was sporadically as-
similated, it provided nearly the same level of benefit
as an observation taken at the location determined from
the full adaptive observation algorithm. However, if an
adaptive observation based on ensemble spread was as-
similated every cycle, the reduction in error relative to
a fixed observation was negligible. This suggests that
the spread algorithm efficiently determined locations
where background errors were large, and assimilation
of the adaptive observation significantly reduced the
analysis error. However, once the background errors had
been made more uniformly distributed from the assim-
ilation of previous adaptive observations, the spread al-
gorithm provided little or no subsequent benefit. Likely
this was because the reduction in analysis error from a
given observation is both a function of the variance in
background errors at the observation location and the
structure of how errors were correlated between the ob-
servation location and the analysis grid point. This latter
effect was apparently more important in situations
where there were not dramatic spatial variations in back-
ground error variances.

Readers are cautioned not to overinterpret the results
presented here. These results used a simplified, quasi-
geostrophic channel model under the assumptions of no
model error. Adaptive observation strategies for im-
proving analyses were tested, but not strategies for im-
proving forecasts. Also, the observational network we
tested was somewhat unrealistic, including a dramatic
data void and observations with simple error charac-
teristics. In reality, observations are available through-
out the real-world data voids, though often the obser-
vations are of lesser quality and do not contain detailed
vertical structure. The algorithms presented here may
not work as well if there is a large amount of nonlin-
earity in the forecast or non-Gaussianity of error dis-
tributions. As a relatively new and computationally ex-
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pensive technology, ensemble-based data assimilation
techniques have yet to be demonstrated operationally.
Still, no intractable problems have been encountered
in tests conducted so far with a wide variety of models
of varying complexity, as discussed in the previously
cited literature; further, many research groups are cur-
rently working toward testing these ideas in operational
models. Nonetheless, our results should be interpreted
as estimating an upper bound for the usefulness of adap-
tive observations. Overall, this algorithmic approach
may be very attractive, since it is theoretically consistent
with the underpinnings of current data assimilation sys-
tems.

The application of such an algorithm in real world
numerical weather prediction and data analysis presup-
poses the existence of an operational EnKF or other
similar algorithm. While many groups are working to-
ward this goal, as of yet there is no operational EnKF
for atmospheric data assimilation. Perhaps the clear ben-
efit of ensemble-based data assimilation methods, not
only for straightforward data assimilation but also for
these ancillary applications, will make its appeal greater
within the operational numerical forecast facilities.
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APPENDIX

Data Assimilation Methods

Each of the three ensembles are generated by con-
ducting parallel data assimilation cycles, with different
member cycles receiving different perturbed observa-
tions. We start with an ensemble of n member analyses
at some time t0. These perturbed analyses were gen-
erated by adding scaled differences between random
model states (Schubert and Suarez 1989) to a control
analysis. We then repeat the following three-step process
for each data assimilation cycle: 1) Make n forecasts to
the next analysis time, here, 12 h hence. These forecasts
will be used as background fields for n subsequent par-
allel objective analyses. 2) Given the already imperfect
observations at this next analysis time (hereafter called
the control observations), generate n independent sets
of perturbed observations by adding random noise to
the control observations. The noise is drawn from the
same distributions as the observation errors (see section
2a). The perturbations are constructed in a manner to
ensure that the mean of the perturbed observations is

equal to the control observation. 3) Perform n objective
analyses, updating each of the n background forecasts
using the associated set of perturbed observations. The
rationale for this methodology is outlined in Burgers et
al. (1998). The details of how the objective analysis is
performed for each of the three ensembles is discussed
below.

Additional complexity will be introduced here to the
basic design of the EnKF. As noted in previous work,
(e.g., Houtekamer and Mitchell 1998; van Leeuwen
1999; Hamill et al. 2001), these details are added to
simplify computations, to improve the analysis, and per-
haps most importantly, to avoid the effects of a detri-
mental process known as ‘‘filter divergence.’’ This is a
process whereby errors can start a cyclical and wors-
ening underestimation of background covariances that
results in the ensemble ignoring the influence of new
observations. A discussion of this problem is provided
in Hamill et al. (2001).

A variety of methods have been tried to prevent filter
divergence. Houtekamer and Mitchell (1998) and
Mitchell and Houtekamer (2000) propose the use of a
‘‘double’’ EnKF, and more recently, a localization of
ensemble covariance estimates, explained later (Hou-
tekamer and Mitchell 2000). Anderson and Anderson
(1999) suggest inflating the deviation of background
members with respect to their mean by a small amount.
Hamill and Snyder (2000) proposed a hybrid ensemble
Kalman filter–3DVAR data assimilation system, where
background-error covariances are modeled as a weight-
ed linear combination of covariances from the ensemble
and stationary covariances from 3DVAR. By including
a small amount of 3DVAR covariances, which have
more degrees of freedom and are larger in magnitude
(by virtue of being a less accurate data assimilation
scheme), the algorithm draws the analyses more toward
the observations and adjusts them in more directions in
phase-space than they are in a straight EnKF. This tends
to prevent filter divergence.

We have coded the assimilation algorithm here in a
general manner, permitting (a) covariance localization,
(b) the inflation of member deviations from their mean,
and/or (c) the hybridization with or even total usage of
3DVAR covariances. However, the implementation of
the hybrid as used here is somewhat different than that
described in Hamill and Snyder (2000); notably though
the same forecast model is used, the analysis variable
is now geopotential rather than potential vorticity, and
the analysis equations are solved in observation space.
Also, the 3DVAR statistics are calculated in a different
manner, and covariances from the ensemble are local-
ized. More details are provided later.

Recall , i 5 1, . . . , n is defined as the m-dimen-bxi

sional model state vector for the ith member background
forecast of an n-member ensemble. The state vector x
for the QG model data assimilation system is comprised
of the streamfunction at each level and grid point, and
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the potential temperature at each grid point of the top
and bottom boundaries.

Presuming one starts with an ensemble of initial con-
ditions generated in a rational manner, the first step in
the data assimilation is to integrate an ensemble of fore-
casts to the next time when observations are available.
If the option to inflate the ensemble is invoked, the next
step is to replace the background state with a new back-
ground state inflated about the ensemble mean forecast.
Background forecasts deviation from the mean are in-
flated by an amount r, slightly greater than 1.0:

b bb bx ← r(x 2 x ) 1 x .i i

Here, the operation ← denotes a replacement of the
previous value.

Next, following the standard EnKF formulation, each
member of the ensemble is updated. The analysis equa-
tion for the ith member is

a b 21 o bb T b Tˆ ˆx 5 x 1 P H [HP H 1 R] (y 2 Hx ). (A1)i i i i

Here, is the subsequently analyzed state; yo denotesaxi

the set of no control observations, with distinct perturbed
observations generated for each member forecast; P̂boyi

is an approximation of the background-error covarianc-
es, described below, and H (here assumed linear) is an
operator that converts the model state to the observation
type and location. Here, H is a simple extraction of
winds and temperature from the background at the ob-
servation location. Here, R is the no 3 no measurement
error covariance matrix; that is, the observations are
related to the true state xt by yo 5 Hxt 1 e, where e is
a normally distributed, random vector with zero mean
and covariance matrix R. Note also that the operation
sequence P̂bHT[HP̂bHT 1 R]21 is often referred to as the
gain matrix; it represents how the observation increment

2 H will change the background state at every grido by xi i

point.
In this data assimilation scheme, nr individual fixed

location raob profiles are assimilated serially; that is,
the set of analyses generated by updating the back-
ground states with the first raob serves as the back-
ground states for assimilation of the second raob, and
so on, until all nr profiles are assimilated. Then these
member analyses are used as the background forecasts
for assimilation of an adaptive observation. Because
raob errors should be independent of each other, the
analysis produced by the serial assimilation of raobs
should be similar to the analysis produced by assimi-
lating all raobs together (Anderson and Moore 1979,
though see caveats in Whitaker and Hamill 2002). Fur-
ther, this makes the rank of [HP̂bHT 1 R] rather low,
so computation of its inverse is not expensive.

As in Evensen (1994) and Houtekamer and Mitchell
(1998, 2001), for computational efficiency, the matrix
operations P̂bHT and HP̂bHT in (A1) are computed to-
gether using data from the ensemble of background
states. Again, Xb is the matrix whose ith column is (n
2 1)21/2( 2 b). Thenbx xi

Tb T b b TP̂ H 5 (1 2 a)r + X (HX ) 1 aBH , and (A2)
Tb T b b TˆHP H 5 (1 2 a)HX (HX ) 1 aHBH . (A3)

There are two terms in each equation. The first term
represents the contribution of flow-dependent statistics
derived from the ensemble, and the second term rep-
resents the stationary, 3DVAR contribution, where B is
the 3DVAR background-error covariance model. The
two terms are weighted by a, a tuneable, fixed constant,
0.0 # a # 1.0. For the 3DVAR part, B is modeled as
B 5 c^P̂b&, where ^ ·& denotes an average covariance
from a 100-member EnKF over a 180-day cycle. Since
these time-averaged covariances have magnitudes con-
sistent with the covariances of the EnKF but are less
accurate (see section 4 also), an empirical multiplier c
. 1.0 is applied to the covariance model; after testing
the accuracy of 3DVAR over a range, c 5 16 was found
to produce the best analyses, and this constant is used
here.

The operation r + in (A2) denotes a Schur product
(an element-by-element multiplication) of a correlation
matrix S with the covariance model generated by the
ensemble, that is, a localization of covariances. The
Schur product of matrices A and B is a matrix C of the
same dimension, where Cij 5 AijBij. For serial data as-
similation, the function S depends upon the observation
location; it is a maximum of 1.0 at the observation lo-
cation and typically decreases monotonically to zero at
some finite distance from the observation. The Schur
product is not applied in (A3), a minor approximation;
the H operator involves a limited stencil of grid points
near the observation location, and the correlation at all
grid points is approximately 1.0. See Houtekamer and
Mitchell (2001) and Hamill et al. (2001) for further
explanations of the rationale for covariance localization.

Because the forecast model we use has impermeable
walls on the north and south walls, S cannot be modeled
strictly using a simple isotropic localization function
around the observation such as suggested by Gaspari
and Cohn (1999); the Schur product of this with P̂bHT

will produce different elements in the gain matrix for
the grid points along the north and south walls. This in
turn will cause analysis increments to vary along the
walls, producing a model state that violates the bound-
ary conditions. Hence, a modified form of covariance
localization is used that permits the same covariance
value to be used at all points along the wall.

To localize covariances, we use the compactly sup-
ported, fifth-order function in Gaspari and Cohn (1999).
Define a correlation length scale lc, measured in model
grid points, and let Fc 5 lc. Define \Dij\ to beÏ(10/3)
the Euclidean distance in grid points between grid point
(i, j) and the observation location. Then an isotropic
localization function wij is defined for every grid point
(i, j) in the domain according to wij(i, j) 5 V(Fc, \Dij\),
where



JUNE 2002 1571H A M I L L A N D S N Y D E R

 5 4 3 21 b 1 b 5 b 5 b
2 1 1 2 , 0 # b # a;1 2 1 2 1 2 1 24 a 2 a 8 a 3 a

5 4 3 2 21V(a, b) 5  1 b 1 b 5 b 5 b b 2 b (A4)
2 1 1 2 5 1 4 2 , a , b # 2a;1 2 1 2 1 2 1 2 1 2 1 212 a 2 a 8 a 3 a a 3 a

0, b . 2a.

FIG. A1. Covariance localization functions for (a) grid point near
the center of the channel, and (b) grid point near wall. Correlation
length scale in this example is 15 grid points.

We also define a function wj( j), which is maximized at
the walls and decreases quickly toward zero away from
them. Let nj equal the number of grid points in north–
south direction (here, 65). Define a distance from the
nearest wall \Dj\ according to

 nj j 2 1, if j # 1 1;
\D \ 5 2j (A5)

n 1 1 2 j, otherwise. j

Then wj( j) 5 V(2.5, \Dj\). Finally, we define the over-
all localization matrix operator S with element sij at the
(i, j)th grid point. Here, sij is a combination of the iso-
tropic function and the zonally averaged function, with
the weight given to each depending on j :

s 5 max [w (i, j)]w ( j) 1 [1 2 w ( j)]w (i, j). (A6)ij ij j j ij
i

Examples of what this localization function looks like
for a grid point in the center of the domain and near a
wall are shown in Figs. A1a,b.
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